PROJECT N.15003414

o CODE ARCHITECT

o Yoav Sraya Design your OOP Yonatan Brooker

-

MODERATOR: AMIR KIRSH



CODE ARCHITECT

INTRODUCTION

Every OOP programmer knows how
hard it is sometimes to keep track of
your OOP world

To take into consideration:
Design-Patterns, encapsulation,
maintainability, efficiency, and a lot
more...

NOT an easy task




CODE ARCHITECT

A live link to GitHub projects

NoO need to copy tens of files.

NO need to forget to update changes
NO need to create an account.

Just log in with GitHub.

An adjusted Al assistant
programmed to identify and look for OOP improvements,

design pattern, and more...

WHAT ARE WE OFER

A smart and interactive UML grpah
To give you a bright and visual structure for your OOP project.




CODE ARCHITECT

After login
And choosing

a project from
GitHub

HOW THIS IS WORKES




CODE ARCHITECT

After login
And choosing

a project from
GitHub

HOW THIS IS WORKES

We will analyze and
compress the project to

a small textual struct




CODE ARCHITECT

HOW THIS IS WORKES

After login
And choosing

a project from
GitHub

We will analyze and
compress the project to

a small textual struct

The Al will learn your

structure and create
ideas for improments




CODE ARCHITECT

HOW THIS IS WORKES

After login
And choosing

a project from
GitHub

By pressing one of the
ideas, the Al will drill
down to give more
specific information

We will analyze and
compress the project to

a small textual struct

The Al will learn your

structure and create
ideas for improments




CODE ARCHITECT

HOW THIS IS WORKES

After login
And choosing

We will analyze and

a project from
GitHub

By pressing one of the
ideas, the Al will drill
down to give more
specific information

compress the project to
a small textual struct

Meanwhile, we will
create for you the UML
with all the necessery

details

The Al will learn your

structure and create
ideas for improments




LET'S LOOK AT OUR ACADEMIC STRUCTURE

What are the classes we need:

STUDENT

EXAMPLE

m PROFESSOR MANAMGENT DATABASE




EXAMPLE

LET'S LOOK AT OUR AGADEMIC STRUCTURE

PROFESSOR

COURSE

STUDENT

ADMINISTRATION




As in UML.:
vertex = class

edge = connection
between two class

double line = circle

There 4 kinds of
connections:
Usage
Aggregation
Composition
Heritage

Each color =
same File

The vertices can
move as the user
wants to make his
owh unique order

WHAT WE ARE SEE

HERE:

Aggregation

Aggregation

Aggregation

®




Facade Pattern The "Administration” class aggregates Course’, "Student’, and Professor’. This class could serve as a
facade to simplify interactions with these underlying classes for higher-level clients.

Observer Pattern If there are scenarios where "Professor’ and “Student™ need to be notified about changes in "Course’,
consider the Observer Pattern. This can help keep objects in sync without tightly coupling them.

Composite Pattern The relationships between "Course’, "Student’, and "Professor’™ can benefit from the Composite Pattern
if these entities need to be treated uniformly. For example, if a “"Course’ can contain multiple Modules’, then both can be
treated as composite objects.

Encapsulation Since all classes are public, ensure that their internal state is encapsulated and accessed through appropriate
getter and setter methods. Avoid exposing internal data directly through public fields.

Single Responsibility Principle Ensure that each class has a single responsibility. For example, "Course’ should manage
course-specific details, " Student” should manage student-specific details, and so on.

Dependency Inversion The "Administration’ class aggregates various entities like "Course’, "Student’, and "Professor’. This
can lead to tight coupling. Consider depending on abstractions (interfaces) rather than concrete classes to improve
flexibility.

Separation of Concerns The "Program’ class is responsible for using "Course’ and "Student’ classes. Ensure that
"Program’ acts only as an entry point and delegates detailed responsibilities to other classes. The business logic should
remain in "Course and "Student’ classes.

he chat offers more
the one principle of
using DP correctly

for example,
professor and
student should use
observer pattern

The chat identified
that there is a circle
of dependency

The chat understands
the simple rules of
programing in c#




TECHNOLOGY

©

we use CH# parser to
analyze the project
and create Summery
Jason for Al and
UML

o

We use GitHub API
to get the user
details and projects

We use Open Al API
machine as Al chat

We use React as our
front-end
framework

We use react as
NodedS as Server

oy

We use React-flow

to create the UML

and to run DFS to
look for circle
dependencies




THE MARKET

UML programs:

Our history with UML was one of the
main reasons we chose this idea. looking
“old”, unnecessary information, and a lot

of work and time to make one

Al Chat
there are a lot of Al bots for which you

can provide code and get corrections
and suggestions. our Al is focused on
the structure and architecture of the

program.




SUMMERY

01

02

03

04

MAKE UML ACCESSIBLE

REDUGE ADAPTATION WITH EXIST PROJECT

INSPIRE THE PROGRAMMER WITH NEW IDEAS

NAKE COMPLICATED SIMPLER




OUR TEAM

4

YOAYV SRAYA

YONATAN BROOKER

THANK YOU FOR
LISTENING!




