

Brew To The Future


Smart Home Brewery

Eyal Shpater Matan Hayon Adi Kapuri

How It All Started

Leviathan Brewery, 2020

Brewing Beer 101

Brew Day2-3 Hours

Fermentation 2-3 Weeks

Bottling 2 Weeks

About a Month

The Problems We Had

Brewing Day

Controlling The Heat Source

Temperature Monitoring

The Problems We Had

Fermentation

Temperature Monitoring

The Problem

Challenges Faced by Homebrewers:

- Manual tasks lead to errors and inefficiencies.
- Lack of automation affects brew quality and consistency.
- Difficulty in troubleshooting and fine-tuning recipes due to absence of data logging.
- Limited remote monitoring capabilities restrict brewers from overseeing the process effectively.
- Recreating favorite beer recipes becomes challenging.

Our Solution

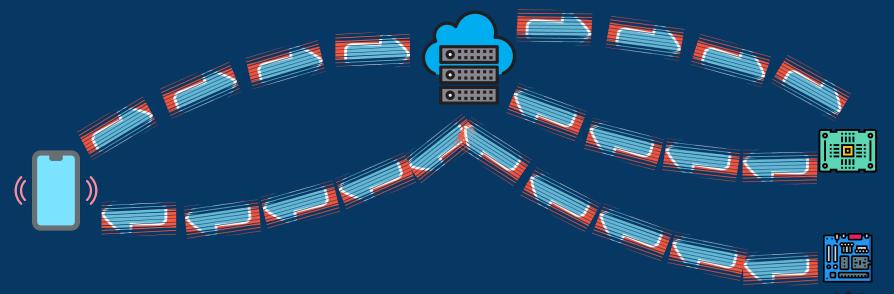
Smart Home Brewery System:

- Automation of brewing operations
- Smart sensors for monitoring brewing temperature, fermentation, and easy brewing control
- Real-time alerts and insights

Our Solution

The Benefits:

- "Plug & Play" Simplifys the brewing process while minimizing errors
- Consistency: Achieves consistent results across multiple brewing sessions, enhancing reliability.
- Data-Driven Insights: Provides valuable data analytics to help brewers understand and improve their brewing techniques.
- Community Sharing: Facilitates sharing of recipes and tips within a community of brewers, fostering collaboration.



Main Features

Our project's main features:

- Brew a recipe: Offer a user-friendly interface for creating brewing recipes, integrated with an IoT system for automated temperature control and execution. Provide an intuitive control interface displaying recipe stages during the brewing process.
- Share & Download recipes online: Enable user profiles for sharing and downloading favorite recipes, while allowing users to contribute, rate, and review recipes to foster a collaborative community.
- **Brewing history:** Display data for each brewing session, along with search functionality to locate sessions by various criteria.

General Architecture

Technology Stack - Frontend

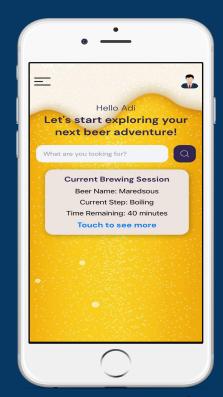
FRONT-END:

Development language: JS

FrameWork: React Native

• **Application:** Mobile

Api Communication: HTTPS



Screens - Frontend

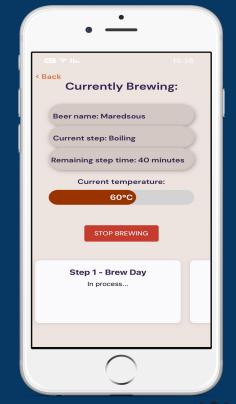
'Welcome' screen

The first screen is the 'Welcome' screen, serving as the entry point to the app, featuring a menu that navigates users to the diverse features.

Screens - Frontend

'Create a Recipe' screen

This screen is the 'Create a Recipe' screen, where users can input desired ingredients and brewing data to add to their personal recipes collection.



Screens - Frontend

'Current Brewing' screen

This screen is the 'Current Brewing' screen, where users can see the current brewing data, such as the current beer temperature, brewing step and time left for current step to end.

Technology Stack - Backend

Development language: Java

FrameWork: Maven, Spring Boot

Database: PostgreSQL

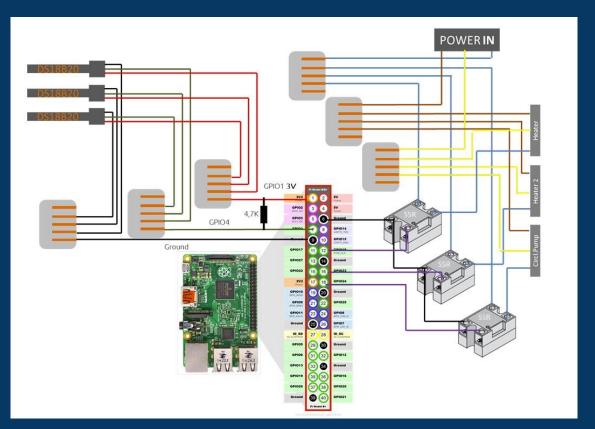
Architecture: Microservices using REST API

Cloud: AWS

The Brewing System

The main system used to brew beer:

 Main processor: Raspberry Pi 4 - fast, durable to run complex programs


- Temperature sensors: ds18b20
- SSR 3-32VDC -> 24-380VAC
- Heat Sink
- Brewing Kettle

The Brewing System

The Brewing System

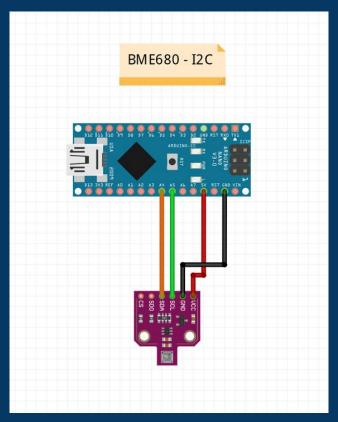
Technology:

- Operating System: Linux
- Language: Python
- Wireless communication

Will be used to monitor the fermentation process for 2-3 weeks:

- Main processor: Arduino nano 33 iot
- Environmental sensor BME680: pressure, temperature, humidity

Technology:


- Language: C++
- Wireless communication

Serial Monitor X

Message (Enter to send message to 'Arduino NANO 33 IoT' on 'COI

```
17:37:22.326 ->
17:37:24.656 -> Temperature = 25.67 *C
17:37:24.697 -> Pressure = 1007.72 hPa
17:37:24.697 -> Humidity = 61.08 %
17:37:24.697 -> Gas = 100.66 KOhms
17:37:24.697 -> Approx. Altitude = 46.14 m
17:37:25.067 ->
17:37:27.398 -> Temperature = 25.68 *C
17:37:27.443 -> Pressure = 1007.71 hPa
17:37:27.443 -> Humidity = 61.13 %
17:37:27.443 -> Gas = 101.09 KOhms
17:37:27.443 -> Approx. Altitude = 46.14 m
17:37:27.802 ->
17:37:30.171 -> Temperature = 25.67 *C
17:37:30.171 -> Pressure = 1007.72 hPa
17:37:30.171 -> Humidity = 61.13 %
17:37:30.171 -> Gas = 101.27 KOhms
17:37:30.171 -> Approx. Altitude = 46.14 m
17:37:30.547 ->
17:37:32.882 -> Temperature = 25.67 *C
17:37:32.919 -> Pressure = 1007.72 hPa
17:37:32.919 -> Humidity = 61.11 %
17:37:32.919 -> Gas = 101.33 KOhms
17:37:32.919 -> Approx. Altitude = 46.14 m
17:37:33.260 ->
17:37:35.662 -> Temperature = 25.66 *C
17:37:35.662 -> Pressure = 1007.72 hPa
17:37:35.662 -> Humidity = 61.05 %
17:37:35.662 -> Gas = 99.11 KOhms
17:37:35.662 -> Approx. Altitude = 46.14 m
17:37:36.035 ->
```


Thank You!

EMA Tech

